Planificación de Geometría Computacional (2018)

 IMPRIMIR PLANIFICACIÓN

Información básica

Carrera
Ingeniería en Informática
Departamento
Informática
Sitio Web
http://e-fich.unl.edu.ar/moodle/course/view.php?id=178
Plan de Estudios
Plan 2006
Carácter Período
Cuatrimestral 0
Docente Responsable
Nestor Alberto Calvo

Equipo docente

Nombre y Apellido
Calvo, Nestor Alberto

Carga horaria

Carga horaria total 60 hs
Teoría 30 hs
Resolución de ejercicios 0 hs
Proyecto y diseño 10 hs
Evaluaciones 0 hs
Formación experimental 10 hs
Resolución de problemas de ingeniería 10 hs
Otras actividades 0 hs

Contenidos mínimos

Algoritmos geométricos ejemplares: Analisis de costo computacional, robustez y tratamiento de casos patológicoa, aspectos importantes en la implementación. Aplicaciones a la computación gráfica, robótica, sistemas de información geográfica (GIS), diseño y fabricación asistidas por computadora (CAD-CAM), generación de mallas, etc.

Objetivos

Se pretende dotar al alumno de las competencias necesarias para analizar y diseñar algoritmos eficientes y robustos para la resolución de problemas que pueden plantearse en términos geométricos. La presentación se hará a través de una serie de algoritmos ejemplares, seleccionados para entender los conceptos generales. Se estudiará la eficiencia y robustez de los algoritmos y los métodos para abordar los casos patológicos. El objetivo primario es que el alumno aprenda a razonar con la lógica particular de éste tipo de algoritmos.

Conocimientos específicos previos para cursar la asignatura

Algoritmos y Estructuras de Datos. Programación en C/C++. Cálculo y Geometría Analítica.

Metodología de enseñanza

Sigue los lineamientos del libro: Computational Geometry: Algorithms and Applications, M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars, Springer-Verlag, 3 ed. 2008.

Semanalmente habrá una clase de teoría y practicas que pueden consistir en análisis de literatura técnica y/o el desarrollo de software específico.

Programa Analítico

Introducción

Definición y alcances de la Geometría Computacional.

Conceptos previos:

Series numéricas

Elementos de la Topología: Abierto, Espacio Topológico, Entorno, Frontera, Conexidad, Compacidad, Homeomorfismo, Variedades diferenciales.

Espacios y transformaciones: Vectorial, Afín, Proyectivo, Métricas. Coordenadas en símplices y funciones de forma.

Análisis Asintótico y Complejidad algorítmica: Cotas O, o, Ω, ω y θ; Análisis de recursiones y Master Theorem.

Dualidades: Grafos duales. Incidencia. Dualidad punto/linea: Dualidad Algebraica. Inversión circular – Polaridad. Dualidad Proyectiva y polaridad cónica.111

Definición y alcances de la Geometría Computacional

Conceptos previos:

Series numéricas

Elementos de la Topología: Abierto, Espacio Topológico, Entorno, Frontera, Conexidad, Compacidad, Homeomorfismo, Variedades diferenciales.

Espacios y transformaciones: Vectorial, Afín, Proyectivo, Métricas.

Coordenadas en símplices y funciones de forma.

Análisis Asintótico y Complejidad algorítmica: Cotas O, o, W, w y Q; Análisis de recursiones y Master Theorem.

Envoltorio Convexo en el plano

Clasificación de polígonos: Simple/Autointerceptado. Convexo/Estrella/Visible desde el exterior. Monótono respecto a una línea.

Definiciones equivalentes de Envoltorio Convexo.

Algoritmo O(n3) trivial.

Algoritmos O(n log(n)): Incremental: Graham Scan. Divide and Conquer. Quick Hull

Algoritmos output-dependent: O(nh): Gift Wrapping y Jarvis March. O(n log(h)): Algoritmo de Chan

Búsqueda en O(log(n)) de tangentes y Bounding-Box de polígonos convexos.

Intersecciones de segmentos en el plano

Algoritmo de barrido plano y estructuras de datos asociadas: Cola de Eventos. Árboles Binarios Auto-Balanceados. Lista Doblemente Enlazada de aristas.

Operaciones Booleanas entre grafos (mallas) y regiones planas (GIS)

Triangulación de Polígonos Simples

Problema del guardián de la galería de arte y triangulaciones. Art Gallery Theorem.

Partición de un polígono en piezas monótonas: Algoritmo de barrido. Triangulación de polígonos monótonos en tiempo lineal.

Triangulación de polígonos con fronteras interiores, regiones planas con líneas sueltas y nubes de puntos aislados.

Programación Lineal

Desmoldabilidad de poliedros y chapas estampadas.

Intersección de semiplanos: Algoritmo divide and conquer.

Programación lineal: Algoritmo incremental. Justificación y backwards analysis para los Algoritmos Aleatorios: Expected Time. Unbounded Linear Programs. Programación lineal en muchas dimensiones

Problemas parecidos o LP-type problems: Facility planning, Euclidean 1-center o envoltorio esférico. Normales y mínimo casquete envolvente en la esfera unitaria.

Ubicación de puntos

Bases de datos y el problema 1D.

Búsqueda ortogonal.

Trees y Tries: kD Tree. Octree. BSP tree.

Búsqueda en triangulaciones por funciones de forma.

Diagrama de Voronoï y Triangulación Delaunay

Definiciones y dualidad, propiedades.

Algoritmo de Fortune: lifting map y coastline.

Triangulación incremental aleatoria.

Generación de puntos y mallas.

Algoritmos en 3D.

Algoritmos en muchas dimensiones.

Bibliografía

Bibliografía básica

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars
Computational Geometry: Algorithms and Applications
Springer-Verlag

Apuntes

Unidad Título Apunte Descripción Descargar

Cronograma de actividades

Introducción y Conceptos previos Semana 1 Tipo: T Duración: 4 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Envoltorios Convexos Semana 2 Tipo: T Duración: 3 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Envoltorios Convexos Semana 2 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Envoltorios Convexos Semana 3 Tipo: T Duración: 3 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Envoltorios Convexos Semana 3 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Intersección de segmentos en el plano Semana 4 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Intersecciones de segmentos en el plano Semana 4 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Intersecciones de segmentos en el plano Semana 4 Tipo: PI Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Triangulación de polígonos simples Semana 5 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Triangulación de Polígonos Simples Semana 5 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Triangulación de Polígonos Simples Semana 5 Tipo: PI Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Triangulación de polígonos simples Semana 6 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Triangulación de Polígonos Simples Semana 6 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Triangulación de Polígonos Simples Semana 6 Tipo: PI Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Programación Lineal Semana 7 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Programación Lineal Semana 7 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Programación Lineal Semana 7 Tipo: PI Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Programación Lineal Semana 8 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Programación Lineal Semana 8 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Programación Lineal Semana 8 Tipo: PI Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Ubicación de puntos (Arboles) Semana 9 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Ubicación de puntos (Arboles) Semana 9 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Ubicación de puntos (Arboles) Semana 9 Tipo: PI Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Ubicación de puntos Semana 10 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Ubicación de puntos Semana 10 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Ubicación de puntos Semana 10 Tipo: P/D Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Diagrama de Voronoï Semana 11 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Diagrama de Voronoï Semana 11 Tipo: PL Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Diagrama de Voronoï Semana 11 Tipo: P/D Duración: 1 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Dualidad Semana 12 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Dualidad Semana 12 Tipo: P/D Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Triangulación Delaunay Semana 13 Tipo: T Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:
Triangulación Delaunay Semana 13 Tipo: P/D Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Apoyo y Evaluación de Prácticas Semana 14 Tipo: PI Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Apoyo y Evaluación de Prácticas Semana 14 Tipo: P/D Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Apoyo y Evaluación de Prácticas Semana 15 Tipo: PI Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Apoyo y Evaluación de Prácticas Semana 15 Tipo: P/D Duración: 2 hs
Docente/s responsable/s: Nestor Alberto Calvo
Descripción:
Observaciones:

Laboratorio de Informática

Guías de actividades

Actividad Título Descripción Descargar

Requerimientos para regularizar

Actividades Prácticas aprobadas antes de finalizar el cuatrimestre.

Las prácticas se pueden realizar en conjunto pero la calificación surge de un coloquio individual donde se evalúa la comprensión de los métodos utilizados.

Requerimientos para promover

Aprobar además un coloquio integrador de las prácticas realizadas y los conceptos de teoría subyacentes.

Entregar y defender un proyecto final libre, teórico o práctico, con un tema previamente consensuado con la cátedra. Puede realizarse en grupo con las mismas condiciones que el resto de las prácticas.

Examen final

Alumnos regulares

Coloquio integrador de todas las prácticas realizadas y los conceptos de teoría subyacentes.

Alumnos libres

7 o más dias antes de la fecha de exámen: Entrega de prácticas adeudadas o no aprobadas y del proyecto final.

En la fecha y horario del exámen: Coloquio integrador de las todas las prácticas realizadas y los conceptos de teoría subyacentes.

Evaluaciones

Fecha Tipo Modalidad Descripción
19-06-2018 Coloquio Oral Coloquio Final.

Todos los temas.